Wednesday, September 25, 2019

WIND ENERGY

WIND ENERGY

WHAT IS WIND ENERGY ?
wind energy is the use of air flow through wind turbines to provide the mechanical power to turn electric generators and traditionally to do other work, like milling or pumping. Wind power is a sustainable and renewable alternative to burning fossil fuels, and has a much smaller impact on the environment.

Wind farms consist of many individual wind turbines, which are connected to the electric power transmission network. Onshore wind is an inexpensive source of electric power, competitive with or in many places cheaper than coal or gas plants. Wind farms also have an impact on the landscape, as typically they need to be spread over more land than other power stations and need to be built in wild and rural areas, which can lead to "industrialization of the countryside" and habitat loss. Offshore wind is steadier and stronger than on land and offshore farms have less visual impact, but construction and maintenance costs are considerably higher. 
WIND FARM


WIND ENERGY :
Wind energy is  a kinetic energy in air in motion.

E={\frac {1}{2}}mv^{2}={\frac {1}{2}}(Avt\rho )v^{2}={\frac {1}{2}}At\rho v^{3},
here, A = area comose length
ENERGY STORAGE :
  • Conventional hydroelectricity complements wind power very well. When the wind is blowing strongly, nearby hydroelectric stations can temporarily hold back their water. When the wind drops they can, provided they have the generation capacity, rapidly increase production to compensate. This gives a very even overall power supply and virtually no loss of energy and uses no more water.
  • Alternatively, where a suitable head of water is not available, pumped-storage hydroelectricity or other forms of grid energy storage such as compressed air energy storage and thermal energy storage can store energy developed by high-wind periods and release it when needed. The type of storage needed depends on the wind penetration level – low penetration requires daily storage, and high penetration requires both short and long term storage – as long as a month or more. Stored energy increases the economic value of wind energy since it can be shifted to displace higher cost generation during peak demand periods. The potential revenue from this arbitrage can offset the cost and losses of storage. For example, in the UK, the 1.7 GW Dinorwig pumped-storage plant evens out electrical demand peaks, and allows base-load suppliers to run their plants more efficiently. Although pumped-storage power systems are only about 75% efficient, and have high installation costs, their low running costs and ability to reduce the required electrical base-load can save both fuel and total electrical generation costs.
  • In particular geographic regions, peak wind speeds may not coincide with peak demand for electrical power. In the U.S. states of California and Texas, for example, hot days in summer may have low wind speed and high electrical demand due to the use of air conditioning. Some utilities subsidize the purchase of geothermal heat pumps by their customers, to reduce electric power demand during the summer months by making air conditioning up to 70% more efficient; widespread adoption of this technology would better match electric power demand to wind availability in areas with hot summers and low summer winds. A possible future option may be to interconnect widely dispersed geographic areas with an HVDC "super grid". In the U.S. it is estimated that to upgrade the transmission system to take in planned or potential renewables would cost at least USD 60 bn, while the society value of added windpower would be more than that cost.
  • Germany has an installed capacity of wind and solar that can exceed daily demand, and has been exporting peak power to neighboring countries, with exports which amounted to some 14.7 billion kWh in 2012. A more practical solution is the installation of thirty days storage capacity able to supply 80% of demand, which will become necessary when most of Europe's energy is obtained from wind power and solar power. Just as the EU requires member countries to maintain 90 days strategic reserves of oil it can be expected that countries will provide electric power storage, instead of expecting to use their neighbors for net metering.



No comments:

Post a Comment