ATOMS
INTRODUCTION
- By the nineteenth century, enough evidence had accumulated in favour of
atomic hypothesis of matter. In 1897, the experiments on electric discharge
through gases carried out by the English physicist J. J. Thomson (1856 –
1940) revealed that atoms of different elements contain negatively charged
constituents (electrons) that are identical for all atoms. However, atoms on a
whole are electrically neutral. Therefore, an atom must also contain some
positive charge to neutralise the negative charge of the electrons. But what
is the arrangement of the positive charge and the electrons inside the atom?
J.J. Thomson - The first model of atom was proposed by J. J. Thomson in 1898. According to this model, the positive charge of the atom is uniformly distributed throughout the volume of the atom and the negatively charged electrons are embedded in it like seeds in a watermelon. This model was picturesquely called plum pudding model of the atom. However subsequent studies on atoms, as described in this chapter, showed that the distribution of the electrons and positive charges are very different from that proposed in this model.
- We know that condensed matter (solids and liquids) and dense gases at all temperatures emit electromagnetic radiation in which a continuous distribution of several wavelengths is present, though with different intensities. This radiation is considered to be due to oscillations of atoms and molecules, governed by the interaction of each atom or molecule with its neighbours. In contrast, light emitted from rarefied gases heated in a flame, or excited electrically in a glow tube such as the familiar neon sign or mercury vapour light has only certain discrete wavelengths. The spectrum appears as a series of bright lines. In such gases, the average spacing between atoms is large.
- Hence, the radiation emitted can be considered due to individual atoms rather than because of interactions between atoms or molecules.
- In the early nineteenth century it was also established that each element is associated with a characteristic spectrum of radiation, for example, hydrogen always gives a set of lines with fixed relative position between the lines. This fact suggested an intimate relationship between the internal structure of an atom and the spectrum of radiation emitted by it. In 1885, Johann Jakob Balmer (1825 – 1898) obtained a simple empirical formula which gave the wavelengths of a group of lines emitted by atomic hydrogen. Since hydrogen is simplest of the elements known, we shall consider its spectrum in detail in this chapter.
- Ernst Rutherford (1871–1937), a former research
student of J. J. Thomson, was engaged in experiments on
α-particles emitted by some radioactive elements. In 1906,
he proposed a classic experiment of scattering of these
α-particles by atoms to investigate the atomic structure.
This experiment was later performed around 1911 by Hans
Geiger (1882–1945) and Ernst Marsden (1889–1970, who
was 20 year-old student and had not yet earned his
bachelor’s degree). The details are discussed in Section
12.2. The explanation of the results led to the birth of
Rutherford’s planetary model of atom (also called the
nuclear model of the atom). According to this the entire
positive charge and most of the mass of the atom is concentrated in a small
volume called the nucleus with electrons revolving around the nucleus just
as planets revolve around the sun.
RUTHERFORD - Rutherford’s nuclear model was a major step towards how we see the atom today. However, it could not explain why atoms emit light of only discrete wavelengths. How could an atom as simple as hydrogen, consisting of a single electron and a single proton, emit a complex spectrum of specific wavelengths? In the classical picture of an atom, the electron revolves round the nucleus much like the way a planet revolves round the sun. However, we shall see that there are some serious difficulties in accepting such a model.
Alpha-particle trajectory
Alpha-particle trajectory |
- The trajectory traced by an α-particle depends on the impact parameter, b of collision. The impact parameter is the perpendicular distance of the initial velocity vector of the α-particle from the centre of the nucleus.
- A given beam of α-particles has a distribution of impact parameters b, so that the beam is scattered in various directions with different probabilities . (In a beam, all particles have nearly same kinetic energy.) It is seen that an α-particle close to the nucleus (small impact parameter) suffers large scattering. In case of head-on collision, the impact parameter is minimum and the α-particle rebounds back (θ ≅ π). For a large impact parameter, the α-particle goes nearly undeviated and has a small deflection (θ ≅ 0).
- The fact that only a small fraction of the number of incident particles rebound back indicates that the number of α-particles undergoing head on collision is small. This, in turn, implies that the mass of the atom is concentrated in a small volume. Rutherford scattering therefore, is a powerful way to determine an upper limit to the size of the nucleus.
ATOMIC SPECTRA
ATOMIC SPECTRA |
- As mentioned, each element has a characteristic spectrum of radiation, which it emits. When an atomic gas or vapour is excited at low pressure, usually by passing an electric current through it, the emitted radiation has a spectrum which contains certain specific wavelengths only.
- A spectrum of this kind is termed as emission line spectrum and it consists of bright lines on a dark background. The spectrum emitted by atomic hydrogen is shown in Fig.
- Study of emission line spectra of a material can therefore serve as a type of “fingerprint” for identification of the gas. When white light passes through a gas and we analyse the transmitted light using a spectrometer we find some dark lines in the spectrum.
- These dark lines correspond precisely to those wavelengths which were found in the emission line spectrum of the gas. This is called the absorption spectrum of the material of the gas.
No comments:
Post a Comment